Os diagramas de dispersão ou gráficos de dispersão são representações de dados de duas (tipicamente) ou mais variáveis que são organizadas em um gráfico. O gráfico de dispersão utiliza coordenadas cartesianas para exibir valores de um conjunto de dados. Os dados são exibidos como uma coleção de pontos, cada um com o valor de uma variável determinando a posição no eixo horizontal e o valor da outra variável determinando a posição no eixo vertical (em caso de duas variáveis).[1]
Correlação: A correlação é qualquer relação dentro de uma ampla classe de relações estatísticas que envolva dependência entre duas variáveis.[12] Por exemplo, a correlação entre a estatura dos pais e a estatura dos filhos. Embora seja comumente denotada como a medida de relação entre duas variáveis aleatórias,[12][13] correlação não implica causalidade.[14] Em termos técnicos, a correlação refere–se a qualquer um dos vários tipos específicos de relação entre os valores médios. Existem diferentes coeficientes de correlação para medir o grau de correlação. Um dos coeficientes de correlação mais conhecidos é o coeficiente de correlação de Pearson, obtido pela divisão da covariância de duas variáveis pelo produto dos seus desvios padrão[15] e sensível a uma relação linear entre duas variáveis.[16]
Exemplos da imagem: https://logisticabrsp.blogspot.com/ |
Regressão: A regressão linear estuda a relação entre muitas ou poucas variáveis. A relação entre duas variáveis é chamada de regressão linear simples. A relação entre mais de duas variáveis é chamada de regressão linear múltipla.[17] Especificamente, a regressão linear simples estuda a relação entre uma variável dependente são os parâmetros que precisam ser estimados.[18]
O coeficiente de determinação, também chamado de R², é uma medida de ajuste de um modelo estatístico linear generalizado, como a regressão linear simples ou múltipla, aos valores observados de uma variável aleatória. O R² varia entre 0 e 1, por vezes sendo expresso em termos percentuais. Nesse caso, expressa a quantidade da variância dos dados que é explicada pelo modelo linear. Assim, quanto maior o R², mais explicativo é o modelo linear, ou seja, melhor ele se ajusta à amostra. Por exemplo, um R² = 0,8234 significa que o modelo linear explica 82,34% da variância da variável dependente a partir do regressores (variáveis independentes) incluídas naquele modelo linear. Fonte: wikipedia.org
Nenhum comentário:
Postar um comentário